

1.1. Digital Down Conversion (DDC)

The Analog-to-Digital Converter (ADC) block sub-samples Intermediate Frequency (IF) signals and a Digital Down Conversion (DDC) block converts the IF to base-band signal.

In normal cases, the tuner is high side mixing and the spectrum is inversed. The demodulator requires an inverse spectrum in the DDC (register *spec_inv*). In RTL2832U there is an adjacent channel canceller that is enabled or disabled by register *en_aci*. The initial IF frequency should be set by register *pset_iffreq*. This register setting depends on the crystal frequency. The equation of *pset_iffreq* is shown below:

pset _ iffreq = - floor
$$\left(\frac{f_{IF_{-}D}}{f_{crystal}} \times 4194304\right)$$

where:

 f_{IF_D} : Intermediate Frequency (IF) after sub-sampling

 $f_{crystal}$: Crystal frequency

Examples:

- $f_{IF}=4.57$ M, $f_{ADC}=28.8$ M, $pset_iffreq=-665554 =>2^{22}-665554 = 3528750$ (two's complement)= 0x35D82E
- f_{IF} =36.167M, f_{ADC} =28.8M, f_{IF_D} =36.167-28.8=7.367, $pset_iffreq$ = - 1072897 =>2^2 - 1072897 =3121407 (two's complement) = **0x2FA0FF**
- f_{IF} =36.125M, f_{ADC} =28.8M, f_{IF_D} =36.167-28.8= 7.367, $pset_{iffreq}$ = - 1066780 =>2^2 - 1066780 = 3127524 (two's complement) = 0x2FB8E4
- $f_{IF}=0M, f_{ADC}=28.8M,$

pset_iffreq=0x0

• DAB mode:

```
pset_iffreq= -1066988 = 3127316 (two's complement) = 0x2FB814
```

			-		. ,	
Register Name	Page	Offset{MSB,LSB}	Bits Used	R/W	Default (Hex)	Description
spec_inv	1	0x15	[0]	R/W	0	1: Spectrum inversion
						0: Spectrum non-inversion
	_					1: Enable adjacent channel rejection
en_aci	1	0x15	[1]	R/W	1	0: Disable adjacent channel
						rejection
pset_iffreq	1	{0x19,0x1B}	[21:0]	R/W		Set IF frequency

|--|

1.2. Resampler

As the ADC sampling clock is larger than the symbol ratio, there is a re-sampler to convert data of sampling rate to symbol ratio. The ratio could be set by register "*rsamp_ratio*". The *rsamp_ratio* is related with signal bandwidth and crystal frequency. The equation of *rsamp_ratio* is shown as below,

rsamp _ ratio = floor
$$\left(\frac{f_{crystal}}{f_{symbol}} \times 4194304\right)$$

where $f_{crystal}$ = crystal frequency

 f_{symbol} = symbol ratio of different bandwidths

BW: 8MHz \rightarrow f_{symbol} =64/7 MHz, $f_{crystal}$ =28.8MHz

rsamp_ratio = 13212057 (dec)= **0x C99999**

BW: 7MHz \rightarrow f_{symbol} =8 MHz, $f_{crystal}$ =28.8MHz

- $rsamp_ratio = 15099494 (dec) = 0x E66666$

BW: 6MHz \rightarrow f_{symbol}=48/7 MHz, f_{crystal}=28.8MHz

DAB mode:

- $rsamp_ratio = 14745600 (dec) = 0x E10000$

Register Name	Page	Offset{MSB,LSB}	Bits Used	R/W	Default (Hex)	Description
rsamp_ratio	1	{0x9F, 0xA2}	[27:2]	R/W	C99999	resampler ratio